...day June 20XX - Morning/Afternoon
A Level Further Mathematics A
Y544 Discrete mathematics

SAMPLE MARK SCHEME

MAXIMUM MARK
 75

Text Instructions

1. Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \boldsymbol{x}	Benefit of doubt
BOD	Follow through
FT	Ignore subsequent working
ISW	Method mark awarded 0, 1
M0, M1	Accuracy mark awarded 0, 1
A0, A1	Independent mark awarded 0, 1
B0, B1	Special case
SC	Omission sign
^	Misread
MR	
Highlighting	
	Meaning
Other abbreviations in mark scheme	Mark for explaining a result or establishing a given result
E1	Mark dependent on a previous mark, indicated by ${ }^{*}$
dep*	Correct answer only
cao	Or equivalent
oe	Rounded or truncated
rot	Seen or implied
soi	Without wrong working
www	Answer given
AG	Anything which rounds to
awrt	By Calculator
BC	This question included the instruction: In this question you must show detailed reasoning.
DR	

2. Subject-specific Marking Instructions for A Level Further Mathematics A

Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
If you are in any doubt whatsoever you should contact your Team Leader.
c The following types of marks are available.

M
A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B
Mark for a correct result or statement independent of Method marks.

E
Mark for explaining a result or establishing a given result. This usually requires more working or explanation than the establishment of an unknown result.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument
d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
e The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for g. E marks will be lost except when results agree to the accuracy required in the question
g Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.

For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some papers. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.

Question			Answer					Marks	AO	Guidance	
1	(i)		Travelling salesperson problem					$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	1.2		
1	(ii)		A A - B 12 C $\mathbf{8}$ D $\mathbf{6}$ E $\mathbf{4}$ Using Prim $\begin{aligned} & \mathrm{AE}=4 \\ & \mathrm{AD}=6 \\ & \mathrm{AC}=8 \text { (or } \\ & \mathrm{DB}=8 \text { (or } \end{aligned}$ Total weigh	B 12 - 10 8 10 algo $B=$ $\mathrm{C}=$ $=26$	C 8 10 - 13 10	D 6 8 13 - 10	E 4 10 10 10 -	B1 M1 A1 B1 [4]	1.1a 1.1 1.1 3.3	Stating that Prim has been used A valid order of building the tree for their starting point (arcs or vertices with arcs indicated on matrix) Valid method seen, leading to 26 Correct (labelled) tree Weights need not be shown	(or Kruskal, if it was used)
1	(iii)		Weight of $\begin{aligned} & =26+2(\mathrm{~A} \\ & =33(\mathrm{~km}) \end{aligned}$	$\begin{aligned} & \mathrm{T}+\mathrm{t} \\ & +5(\mathrm{I} \end{aligned}$	o lea	t wei	arcs to F	$\begin{gathered} \hline \text { M1 } \\ \\ \text { A1FT } \\ {[2]} \\ \hline \end{gathered}$	3.4 1.1	Their 26 (from (ii)) $+2+5$	
1	(iv)	(a)	$\begin{aligned} & \text { F-A-E-B-D } \\ & \text { F-A-E-C-B } \\ & \text { F-A-E-D-B } \end{aligned}$	$\begin{aligned} & -F= \\ & -F= \\ & -F= \end{aligned}$	$\begin{aligned} & +4- \\ & +4- \\ & +4 \end{aligned}$	$\begin{aligned} & 10+8 \\ & 10+18 \\ & 10+8 \end{aligned}$	$\begin{aligned} & +13+9=46 \\ & +8+7=41 \\ & =10+9=43 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.4 \\ & 1.1 \\ & 1.1 \end{aligned}$	At least one route F-A-E- At least one correct cycle All three correct cycles	

Question			Answer F-A-E-B-D-C-F $=46$ F-A-E-C-B-D-F $=41$ F-A-E-D-B-C-F $=43$ The length of Fiona's route is no more than $41(\mathrm{~km})$	Marks	AO	Guidanc	
1	(iv)	(b)		M1 A1 [2]	3.4 2.2a	Calculating the length of at least two of the paths given in part (a). 41 from cycle F-A-E-C-B-D-F	
1	(v)		E.g. The information so far says that the best route is between 26 and 41 km , but the only route that we have constructed has length 41, so we don't know.	E1 [1]	2.2b	For an answer that makes clear the uncertainty due to the lower bound not being the length of a cycle that has been found.	
2	(i)		Critical activities: Survey, planning, extension, decoration (See page 15 for larger diagram)	M1 A1 B1 M1 A1 M1 A1 [7]	$\begin{gathered} 2.2 \mathrm{a} \\ 1.1 \\ 1.1 \\ 3.3 \\ 1.1 \\ \\ 1.1 \\ 1.1 \end{gathered}$	At most one error Activities labelled, one activity per row Early start and finish times (solid boxes) correct for A, B, C,F, G, H All correct Float (dashed boxes) any two correct All correct	A, H, I, L and no others May have critical activities on a single row
2	(ii)		Latest start for $J=23-6=17$ Float for $J=(23-9)-6=8$ $17-15<6$, so float is all interfering	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { E1 } \\ {[3]} \\ \hline \end{gathered}$	$\begin{aligned} & 1.1 \\ & 3.4 \\ & 1.1 \end{aligned}$	No independent float	

| Question | | Answer | Marks | AO | Guidance | |
| :--- | :--- | :--- | :--- | :---: | :---: | :--- | :--- |
| $\mathbf{2}$ | (iii) | When each activity starts at its earliest start
 time (as in the cascade chart) the only days
 with more than three activities are days 28 to
 31
 e.g. Delay repairing the roof (E) until after
 repairing the brickwork (D) has finished and
 then do the kitchens and bathrooms (K) | M1 | 2.2a | FT their cascade chart if possible
 Identifying problem (at day 28)
 (may be implied from resolution) | If their cascade chart has no
 day with more than three
 activities, and they say so \Rightarrow
 M1A0 |
| A1 | | | | | | |

Question			Answer 5 ! or ${ }^{5} \mathrm{P}_{5}=120$	Marks B1 [1]	$\begin{array}{\|c\|} \hline \text { AO } \\ \hline 1.1 \\ \hline \end{array}$	Guidance	
3	(i)						
3	(ii)		${ }^{5} \mathrm{C}_{3}=10$ ways to choose the three letters that will be put in the correct envelopes. The other two letters must be swapped over, so there is only one way to put them in the wrong envelopes. So there are $10 \times 1=10$ arrangements with exactly 3 letters in the correct envelopes.	M1 E1 [2]	1.1 1.1	Any valid attempt 10 from valid reasoning	A list of the ten possibilities \Rightarrow M1A0 unless supported with reasoning to show that there are no other possibilities
3	(iii)	(a)	The first symbol cannot be A. If it is B then it must be followed by C and then A (so that C is not last) and if it is C then it must be followed by A and then B (so that B is not second).	B1 [1]	1.1	Or list the six permutations and identify the two derangements (but not just writing down the two derangements with no explanation for why there are no others)	
3	(iii)	(b)	${ }^{5} \mathrm{C}_{2}=10$ ways to choose the two letters that will be put into the correct envelopes and 2 ways to arrange the other three letters so that none are in the correct envelopes. So there are $10 \times 2=20$ arrangements with exactly 2 letters in the correct envelopes.	E1 [1]	2.2a	20 from valid reasoning	

Question		Answer	Marks	AO	Guidance	
3	(iv)	There are $n-1$ choices for the first position. Then the symbol that was in the first position either goes in the position corresponding to the symbol that is now in the first position or not. In the first case we are left with $n-2$ symbols with the corresponding $n-2$ positions, which can be done $\mathrm{D}(n-2)$ ways. In the second case we can rename the first symbol with the name of the second symbol and then we have $n-1$ symbols with $n-1$ corresponding positions, which can be done $\mathrm{D}(n-1)$ ways. Hence the result given.	M1 E1 [2]	3.1a 2.1	Or any equivalent partial argument Achieving the given result $\mathrm{D}(n)=(n-1) \times(\mathrm{D}(n-1)+\mathrm{D}(n-2))$	
3	(v)	$\begin{aligned} & \mathrm{D}(4)=3(2+1)=9 \\ & \mathrm{D}(5)=4(9+2)=44 \end{aligned}$ There are 44 ways in which all five letters can be in the wrong envelopes	M1 A1 [2]	3.1a 3.2a	OR 1 way with all five correct, 10 ways with three correct, 20 ways with two correct and $5 \times 9=45$ ways with one correct $120-(45+20+10+1)=120-76=44$	OR M1 use inclusion-exclusion: $\begin{aligned} & 5!-\frac{5!}{1!}+\frac{5!}{2!}-\frac{5!}{3!}+\frac{5!}{4!}-\frac{5!}{5!} \\ & =120-120+60-20+5-1 \\ & \mathbf{A 1}=44 \end{aligned}$

Question		Answer	Marks	AO	Gu	
4	(i)		$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	$\begin{gathered} 1.1 \\ 1.1 \\ 2.2 \mathrm{a} \end{gathered}$	oe	Play-safe values not equal
4	(ii)	If player A uses strategy R, player B would get the best pay-off by changing from Z to Y	B1 [1]	2.2a		
4	(iii)	Increasing entry in (R, Z) has no effect on row min and increases col max. Row maximin is still 0 and col minimax is greater than 2, they are not equal and the game is still unstable. Decreasing entry has no effect on col max, as $(Q, Z)=2$, and may or may not decrease row min . Row maximin is either still 0 or is less than 0 and col minimax is still 2 , they are not equal and the game is still unstable.	E1 E1 [2]	2.4 2.4	Describing what happens if entry is increased Describing what happens if entry is decreased	
4	(iv)	e.g. row R column Y is increased to 2 (or more)	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \\ \hline \end{gathered}$	$\begin{aligned} & 2.1 \\ & 2.3 \end{aligned}$	Identifying a suitable cell Giving a valid new value	

Question			Answer	$\begin{array}{\|c\|} \hline \text { Marks } \\ \hline \text { M1 } \\ \hline \end{array}$		Guidance	
4	(v)		Player $A:(P, X),(R, X),(P, Y),(Q, Z),(R, Z)$ Player $B:(P, Z),(\mathrm{Q}, Y),(R, Z)$ When player A chooses row R and player B choses column Z it is a Nash equilibrium Neither player would want to change, unless the other changed as well		1.1 2.5 2.4	Identifying cells where row maxima occur. May include (R, Y) if value used in (iv) is exactly 2. (R, Z) is a Nash equilibrium Explaining Nash equilibrium in context	
5	(i)		The number of red tulips is $25 x+40 y+20 z$ and the number of white tulips is $\begin{aligned} & 25 x+30 y+30 z \\ & \Rightarrow 25 x+40 y+20 z \leq 50+(25 x+30 y+30 z) \\ & \Rightarrow 10 y-10 z \leq 50 \Rightarrow y-z \leq 5 \end{aligned}$ Add slack variable s to get row 2: $y-z+s=5$	B1 M1 A1 [3]	$\begin{aligned} & 3.3 \\ & 1.1 \\ & 1.1 \end{aligned}$	A correct expression for the number of red tulips A correct inequality involving 50 Manipulating inequality and adding slack variable to get row 2	May be seen as an explicit part of an inequality May scale first
5	(ii)		Column x row 4	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	1.1	Describing this cell	50 in row 4 or 50 in column x
5	(iii)		Entry for row 2 in column x (pivot column) was 0	E1 [1]	1.1	Value in pivot column was 0	
5	(iv)	(a)	$x=4.8, y=0, z=0$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	1.1	$x=4.8, y$ and z both 0	
5	(iv)	(b)	Not optimal (for continuous problem) since still a negative in top row (column y) Practical problem requires integer values, so practical solution is to buy 4 of pack A only (100 tulips of each colour)	B1 B1 [2]	$\begin{gathered} 3.4 \\ 3.5 \mathrm{a} \end{gathered}$	Optimal solution not yet achieved Need integer values so 4 of pack A	Recognising that further iterations are needed Interpretation in context (packs or tulips)

Question		Answer	Marks	A0	Guidance	
5	(v)	u becomes a non-basic variable $\begin{aligned} & x=4.8-0.96 y-1.06 z-0.02 u \\ & P-x-y-z=0 \\ & \Rightarrow P-(4.8-0.96 y-1.06 z-0.02 u)-y-z=0 \\ & \Rightarrow P-0.04 y+0.06 z+0.02 u=4.8 \end{aligned}$	B1 B1 B1 [3]	$\begin{aligned} & 1.2 \\ & 1.1 \\ & 1.1 \end{aligned}$	cao Working leading to correct expression corresponding to row 1 of iterated tableau	
5	(vi)	$\Rightarrow P-0.04 y+0.06 z+0.02 u=4.8$ When y, z and $u=0, P=4.8$ $x=4.8-0.96 y-1.06 z-0.02 u$ When y, z and $u=0, x=4.8$	B1 B1 [2]	$2.2 \mathrm{a}$ $2.2 \mathrm{a}$		Must refer to equations not just find value(s) or use tableau to read off value(s)
6	(i)		B1	1.1	Arcs may be drawn crossing	

Question		Answer	Marks	AO	Guidance	
6	(ii)	$\begin{aligned} & \mathrm{V}+\mathrm{R}=\mathrm{E}+2 \Rightarrow 6+\mathrm{R}=8+2 \Rightarrow \mathrm{R}=4 \\ & \{A, B, E\},\{B, C, D, E\},\{A, D, E, F\} \\ & \{A, B, C, D, F\} \end{aligned}$	M1 M1 A1 [3]	$\begin{aligned} & 1.1 \mathrm{a} \\ & 1.1 \\ & 1.1 \end{aligned}$	Showing substitution of $\mathrm{V}=6$ and $\mathrm{E}=8$ to get $\mathrm{R}=4$ Any three of these sets All four sets and no others	
6	(iii)	If $A B$ is part of a Hamiltonian cycle then (to include C) must have $A-B-C-D$ but then either have $D-E-A$ or $D-F-A$, but cannot visit both E and F Ignoring arc $A B$ means that part of the cycle must be $E-B-C-D$ To include A and F, cycle must continue $D-F$ $-A-E$. So there is only one Hamiltonian cycle.	M1 E1 M1 E1 [4]	1.1 2.4 3.1a 3.2a	Partially correct attempt at reasoning Explaining that if $A B$ is used the cycle can visit at most two of C, E and F Identifying cycle $E-B-C-D-F-A$ $-E$ Showing that there are no other Hamiltonian cycles	Assuming that $A B$ is included and reaching a contradiction
6	(iv)	STEP 1: $E=$ colour 1 STEP 2: A, B and $D=$ colour 2 STEP 3: C and $F=$ colour 1 STEP 2: Stop The two colours correspond to the two sets in a bipartite graph, but A and B are both colour 2 (so in the same set) yet they are connected by the $\operatorname{arc} A B$	B1 E1FT [2]	$\begin{gathered} 1.1 \\ 2.2 \mathrm{a} \end{gathered}$	C, E and F are colour 1 A, B and D are colour 2 $\operatorname{Arc} A B$ has both ends the same colour	Need not show STEP numbers Could draw solution, but if so it must be in the answer space for this part A and B are the same colour and are connected by an arc SC1 If algorithm not followed, but valid argument given e.g. that $A B E$ is an odd length cycle

Question		Answer	Marks	AO	Guidance	
6	(v)	Remove arc $A B$ to give a bipartite graph with sets $\{A, B, D\}$ and $\{C, E, F\}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & A B \\ & \{A, B, D\} \text { and }\{C, E, F\} \end{aligned}$	
6	(vi)	Graph G is planar so arcs of graph G can be drawn on one plane surface with no arcs crossing, then new arcs can be drawn on a second plane surface. Hence thickness is at most 2. Kuratowski's theorem says that if a graph includes a subdivision of either $K_{3,3}$ or K_{5} as a subgraph then it is not planar. The new graph does not contain either of these as subgraphs, however: If arc $A F$ is contracted then the new graph contains $K_{3,3}=\{X, C, E\},\{(A F), B, D\}$ as a subgraph (or similarly using arc $F D$) Hence, new graph is not planar so thickness $\neq 1$ Hence thickness is at least 2 Therefore the thickness must be 2	E1 B1 M1 E1 [4]	3.1a 1.2 2.1 3.2a	Showing that new graph can be drawn using 2 layers Knowing what Kuratowski's theorem says and that the new graph does not contain a subgraph which is a subdivision of K_{5} or $K_{3,3}$ Attempting to create either K_{5} or $K_{3,3}$ as a subset by combining arcs Deducing that new graph is non-planar and hence thickness is not 1	OR M1 Contract arc $B C$ (or $\operatorname{arc} C D$) and arc $A F$ (or arc $F D$) so graph G becomes K_{4} and adding the new arcs gives $K_{5}=\{X,(A F),(B C), D, E\}$ as a subgraph (or similarly).

Enlarged diagram for Q2(ii)

Assessment Objectives (AO) Grid

Question	AO1	AO2	AO3(PS)	AO3(M)	Total
1(i)	1		0	(1)	1
1(ii)	3	0	(1)	1	4
1(iii)	1	0	0	1	2
1(iv)(a)	2	0	0	1	3
1(iv)(b)	0	1	0	1	2
1(v)	(0)	1	(0)	(1)	1
2(i)	5	1	0	1	7
2(ii)	2		(1	3
2(iii)	0	1	1	1	3
3(i)	1	0	0	0	1
3(ii)	2	0	U	0	2
3(iii)(a)	1	0	(0)	U	1
3(iii)(b)	0	1	0	(0)	1
3(iv)	0	1	1	0	2
3(v)	0	0	2	U	2
4(i)	2	1	0	0	3
4(ii)	0	1	0	(1)	1
4(iii)	(1)	2	(0)	(1)	2
4(iv)	U	2	0	0	2
4(v)	1	2	0	(1)	3
5(i)	2	0	(1)	1	3
5(ii)	1	0	0	(1)	1
5(iii)	1	0	0	0	1
5(iv)(a)	1	0	0	0	1
5(iv)(b)	0	0	0	2	2
5(v)	3	(1)	0	(0)	3
5(vi)	(2	U	0	2
6(i)	1	0	0	(1)	1
6(ii)	3	0	0	0	3
6(iii)	1	1	2	0	4
6(iv)	1	1	0	(0)	2
6(v)	2	(0	0	2
6(vi)	1	1	2	0	4
Totals	38	19	8	10	75

[^0]
Summary of Updates

Date	Version	Change
October 2019	2	Amendments to the front cover rubric instructions to candidates

Accredited

Oxford Cambridge and RSA

A Level Further Mathematics A
 Y544 Discrete Mathematics Printed Answer Booklet

Version 2

Date - Morning/Afternoon

Time allowed: 1 hour 30 minutes

You must have:

- Question Paper Y544 (inserted)
- Formulae A Level Further Mathematics A

You may use:

- a scientific or graphical calculator

INSTRUCTIONS

- The Question Paper will be found inside the Printed Answer Booklet.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Complete the boxes provided on the Printed Answer Booklet with your name, centre number and candidate number.
- Answer all the questions.
- Write your answer to each question in the space provided in the Printed Answer Booklet. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question.
- The acceleration due to gravity is denoted by gms^{-2}. Unless otherwise instructed, when a numerical value is needed, use $g=9.8$

INFORMATION

- You are reminded of the need for clear presentation in your answers.
- The Printed Answer Booklet consists of 12 pages. The Question Paper consists of 8 pages.

(2)

3(iv)	
3(v)	

6(ii)

6(v)	
6(vi)	

Copyright Information:

OCR is committed to seeking permission to reproduce all third-party content that it uses in the assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact OCR, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.
OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge

[^0]: PS = Problem Solving
 $\mathrm{M}=$ Modelling

